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Analytische Berechnung der wahren Anomalie 
in einer elliptischen Umlaufbahn 

Autor: Albin Hoffmann     Bütgenbach den 17.4.2006    (Belgium) 
 
Berechnungsparameter: 
 
 r  = Abstand vom Brennpunkt zum Körper (Abstand zwischen Sonne und Erde) 
 minr  = kleinster Abstand zum Brennpunkt 

 maxr  = größter Abstand zum Brennpunkt 

 ν  = wahre Anomalie (Winkel zwischen Periapsis und Körper gemessen im Brennpunkt) 
 e  = Exzentrizität 
 t  = Tag 
 pt  = Tag im Periapsis (Perihel) 

 T  = Periode = Anzahl Tage zwischen zwei Durchgänge im Periapsis (Anomalistisches Jahr) 
 

 
 
Positionsvektor vom Brennpunkt zum Körper: 
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Bewegung auf der Umlaufbahn: 
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μr   = tangentialer Einheitsvektor → μν r
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 Geschwindigkeitsvektor des Körpers: 
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 Beschleunigungsvektor des Körpers: 
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 Gravitation: 
 
 Die Gravitationskraft wirkt senkrecht auf μr . Die tangentiale Komponente der Beschleunigung = 0 
 
 → 02 =⋅+⋅⋅ νν &&&& rr   = tangentiale Beschleunigung 
 

 multipliziert durch r  mit: 0≠r  → 02 2 =⋅+⋅⋅⋅ νν &&&& rrr  
 

 Dies ist die Ableitung von: 0
2 Cr =⋅ν&   (1) (= Beweis für das zweite Keplersche Gesetz) 

 
Bei einer elliptischen Umlaufbahn: 
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 Lösung der Differentialgleichung: 
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 Periapsis im Tag   bei   0 === pttν  
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 Erste Ableitung: 
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 Periapsis im Tag   bei   0 === pttν  
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 Zweite Ableitung: 
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